Chem 201 – NMR Handout

I. Coupling Constants
 A. General
 1. The distance (in Hertz) between peaks in a multiplet is the coupling constant.
 2. Hydrogens on neighboring carbons will couple (follow the n + 1 rule)
 a) This is normally a 3 bond coupling constant (3J). There can be 2 bond to 5 bond coupling constants as well. 3J coupling constants are typically what is seen for the n + 1 rule.

Ex - There are three distinct types of hydrogens in (Z)-methylchloroacrylate. Notice that H_a and H_b couple with each other with a $^3J = 9$ Hz value. H_a and H_b are both doublets due to their one neighbor. H_c is too far away to couple with either of them and is thus a singlet. H_a and H_b are both doublets due to their one neighbor.

![NMR spectrum of methylchloroacrylate with peaks at 3.76, 6.18, and 6.88 PPM.]

B. General Values for Coupling Constants

<table>
<thead>
<tr>
<th>Type</th>
<th>Coupling Constant</th>
<th>Type</th>
<th>Coupling Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>3J</td>
<td>7 Hz</td>
<td>3J</td>
<td>8 Hz</td>
</tr>
<tr>
<td>3J</td>
<td>10 Hz</td>
<td>4J</td>
<td>2 Hz</td>
</tr>
<tr>
<td>3J</td>
<td>15 Hz</td>
<td>3J</td>
<td>6 Hz</td>
</tr>
<tr>
<td>2J</td>
<td>2 Hz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Complex
 1. A hydrogen can be coupled to two (or more) other types of hydrogen with different coupling constants. This will not follow the pattern predicted by the n+1 rule.
a) Say that we have \(H_ACH_BCH_C \). Suppose that \(H_A \) and \(H_C \) were very different from each other. \(H_B \) would be a triplet by the n+1 rule. Instead it is a doublet of doublets since \(^3J_{AB} \) does not equal \(^3J_{BC} \).

Example – styrene

Notice that \(H_C \) is not a triplet as predicted by the n+1 rule. Instead it is a doublet of doublets centered around 5.18 ppm. It has both a \(^3J_{AC} \) and a \(^2J_{BC} \). \(H_A \) and \(H_B \) are also doublet of doublets as well.

It helps to draw a splitting tree to see what the pattern will look like. \(H_A \) and \(H_C \) are cis to each other and share a \(^3J=11 \) Hz. \(H_A \) and \(H_B \) are trans to each other and share a \(^3J=17 \) Hz. \(H_C \) and \(H_B \) share a \(^2J=1.4 \) Hz.

II. Carbon 13 NMR

A. General Information

1. About 1% of the carbons in an organic molecule are \(^{13}C\), most are the NMR inactive but more common isotope of \(^{12}C\). This means that in order to see a strong signal and interpret it to obtain a spectrum that we need to run the samples as concentrated as possible.

2. The peaks in a \(^{13}C\) spectra can not be integrated relative to one another as in \(^1H\) NMR.
a) CH$_3$ tend to be taller than CH$_2$ which tend to be larger than CH and quaternary carbons peaks will be quite short.

3. TMS is the internal standard as in 1H NMR and is set to zero. The chemical shift runs from 250 - 10 ppm.

B. Regions of interest in 13C.

![Figure 13-41](image)

Table of approximate chemical shift values for 13C NMR. Most of these values for a carbon atom are about 15 to 20 times the chemical shift of a proton if it were bonded to the carbon atom.

C. Coupling between C and H
1. 13C and H can and do couple with each other (1J values). The problem is that the carbon atom can couple with the hydrogen attached to itself and the hydrogen on the neighboring carbon. This can make for a very messy spectrum.
 a) 13C to 13C coupling is not seen because it would be very unlikely to see two 13C atoms in the same molecule (remember most of the carbon is 12C).

D. Different experiments
1. Proton Decoupled Experiment
 a. This is the most common type of spectra for carbon 13.
 b. In this experiment a second radio pulse is used to hit the hydrogens in the molecule so that they can’t couple with the carbons.
 c. Thus **every carbon is a singlet**.

2. Off-Resonance Decoupling
 a. This allows only 1J C-H coupling to occur.
 b. The n+1 rule is followed, where n is the # of hydrogen attached to the carbon.
 1) Thus CH$_3$ are quartets, CH$_2$ are triplets and CH are doublets.
 c. Often these values are listed above a peak in a proton decoupled experiment so that both spectra don’t have to be printed out.